Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity.
نویسندگان
چکیده
Otoacoustic emissions (OAEs) have become a commonly used clinical tool for assessing cochlear health status, in particular, the integrity of the cochlear amplifier or motor component of cochlear function. Predicting hearing thresholds from OAEs, however, remains a research challenge. Models and experimental data suggest that there are two mechanisms involved in the generation of OAEs. For distortion product, transient, and high-level stimulus frequency emissions, the interaction of multiple sources of emissions in the cochlea leads to amplitude variation in the composite ear canal signal. Multiple sources of emissions complicate simple correlations between audiometric test frequencies and otoacoustic emission frequencies. Current research offers new methods for estimating the individual components of OAE generation. Input-output functions and DP-grams of the nonlinear component of the 2f2-f2 DPOAE may ultimately show better correlations with hearing thresholds. This paper reviews models of OAE generation and methods for estimating the contribution of source components to the composite emission that is recorded in the ear canal. The clinical implications of multiple source components are discussed.
منابع مشابه
Level dependence of distortion product otoacoustic emission phase is attributed to component mixing.
Distortion product otoacoustic emissions (DPOAEs) measured in the ear canal represent the vector sum of components produced at two regions of the basilar membrane by distinct cochlear mechanisms. In this study, the effect of stimulus level on the 2f(1) - f(2) DPOAE phase was evaluated in 22 adult subjects across a three-octave range. Level effects were examined for the mixed DPOAE signal measur...
متن کاملبررسی تأثیر مواجهه سر و صدا بر شنوایی کارکنان کارخانه سینک سازی: مقایسه یافته های ادیومتری تون خالص و گسیل های صوتی گوش
Background and purpose: Stimulus–evoked otoacoustic emission (OAE) is generated by the outer hair cells (OHCs) and high levels of noise will highly damage these cells. Therefore, even a mild loss in OHCs could alter the generation of OAE. The aim of this study was to assess and compare the pure tone threshold, Distortion Product Otoacoustic Emission (DPOAE) amplitude in industrial workers exper...
متن کاملExperimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions.
High-resolution measurements of distortion product otoacoustic emissions (DPOAEs) from three different experimental paradigms are shown to be in agreement with the implications of a realistic "two-source" cochlear model of DPOAE fine structure. The measurements of DPOAE amplitude and phase imply an interference phenomenon involving one source in the region of strong nonlinear interaction of the...
متن کاملPreconditioning by the inhalation of pure oxygen protects rat’s cochlear function against noise-induced hearing loss
Background: Occupational noise-induced hearing loss (ONIHL) is a hearing disorder that affects workers all over the world. Preconditioning with several mild or less potent stressors will effectively prevent the development of noise-induced hearing loss. This study investigated the possible preventive effects of normobaric hyperoxia preconditioning on preventing the noise-induced hearing impairm...
متن کاملDiagnostics of the cochlear amplifier by means of distortion product otoacoustic emissions.
Distortion product otoacoustic emission (DPOAE) growth functions reflect the active nonlinear cochlear sound processing when using a primary-tone setting which accounts for the different compressions of the two primaries at the DPOAE generation site and hence provide a measure for objectively assessing cochlear sensitivity and compression. DPOAE thresholds can be derived from extrapolated DPOAE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ear and hearing
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2003